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Electrodynamics 

 

The laws of classical electrodynamics were discovered by, Franklin, 

Coulomb, Ampere, Faraday and others. The person who completed the job and 

perfected it all in the compact and consistent form it has today, was James clerk 

Maxwell. The theory is now more than hundred years old. ( watch 

https://www.youtube.com/watch?v=AWI70HXrbG0 ) 

 

In the beginning, electricity and magnetism were entirely separate subjects. 

But in 1820 Oerstead observed that an electric current could deflect a magnetic 

needle. Soon afterward, Ampere correctly postulated that all magnetic phenomena 

are due to electric charges in motion. Then in 1831, Faraday discovered that a 

moving magnet generates an electric current. By the time Maxwell and Lorentz put 

finishing touches on the theory, electricity and magnetism were inextricably 

entangled. They could no longer be regarded as separate subjects, but rather as two 

aspects of a single subject : electromagnetism.  

( watch https://www.youtube.com/watch?v=3HyORmBip-w ) 

 

Faraday had speculated that light, too, is electrical in nature. Maxwell’s theory 

provided spectacular justification for this hypothesis. Hertz presented the decisive 

https://www.youtube.com/watch?v=AWI70HXrbG0
https://www.youtube.com/watch?v=3HyORmBip-w
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experimental confirmation for Maxwell’s theory in 1888. By 1900, then, three 

great branches of physics, electricity, magnetism and optics, had merged into a 

single unified theory. According to the concept of the field formulation of 

electrodynamics, the space around an electric charge is permeated by electric and 

magnetic fields. A second charge, in the presence of these fields, experiences a 

force. The fields transmit the influence from one charge to the other. The fields 

mediate the interaction. (Watch  Electromagnetic Waves - with Sir Lawrence 

Bragg  https://www.youtube.com/watch?v=Vwjcn4Vl2iw ) 

 

When a charge undergoes acceleration, a portion of the filed “detaches” itself, in a 

sense, and travels off at the speed of light, carrying with it energy, momentum and 

angular momentum. We call this electromagnetic radiation. 

 

Electric charge 

 

1. Charge appears appears in nature in two varieties, which are called ‘plus’ and 

‘minus’. Their effects (the positive and negative) tend to cancel. Of we have 

+q and -1 charges at the same point, electrically it is the same as having no 

charge there at all. 

2. Charge is conserved. If cannot be created or destroyed. A plus charge can 

‘annihilate’ an equal minus charge, but a plus charge cannot simply disappear 

https://www.youtube.com/watch?v=Vwjcn4Vl2iw
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by itself. So the total charge of the universe is fixed for all time. This is called 

the global conservation of charge. There is a local conservation of charge as 

well. According to this a charge cannot disappear from one point in space and 

reappear at another point without a continuous path connecting the two points. 

The movement of the charges is defined by the continuity equation. 

3 Charge is quantized. The electric charge appears only in discrete lumps (not 

necessarily required by the classical electrodynamics) as integral multiples of 

the basic unit of charge. If we call the charge on proton +3, then the charge on 

electron is –e, the neutron charge is zero, the pi mesons +e, O, and –e, the 

carbon nucleus has +6e and so on. This fundamental unit of charge e is 

extremely small, so for practical purposes it is usually appropriate to ignore 

quantization altogether. 

 

Coulomb’s law 

 

 Based on experiments  experiments Coulomb found that the force between 

two electric charges (in the form of point charges) q1 and q2 is given by (charges in 

free space) 
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 Where r is the distance between the two point charges. A is the constant of 

proportionality. In c.g.s. units the unit of electric charge is defined using equation 

(1) Unit of electric charge is defined in c.g.s unit as that charge which, when 

placed at a distance of one unit (1 cm) from an identical charge repels it with a 

force of one unit (1 dyne). This unit in c.g.s system is called stat coulomb or 1 c.g.s 

unit. Under this definition A, the constant of proportionality becomes unity. But, in 

S.I units the unit of electric charge is already defined as coulomb. Since the unit of 

force, electric charge and distance are all defined independently, the constant A 

cannot be made to become unity. The constant 
0

4

1
A


 in S.I. units. 

0 carries 

dimension to balance the equation and is called the absolute permittivity of free 

space. The quantity 4 is intentionally included, so that all the formulae derived 

from equation (1) reflect the symmetry of the problem involved, and the process is 

called rationalization. 
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 The direction of the force in equation (1) is along the line joining the two 

charges (the force is a central force). Let 
1r


be the position vector of q1 and 
2r


the 

direction of the force experience by q2 due to q1 is 

 r̂
r

qq
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1
F
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21

0


  where 12 rrr   

Naturally the force felt by q1 is in the opposite direction and having same 

magnitude. r̂ is the unit vector in the direction of .r


 

( For details and simulations visit 

http://web.mit.edu/viz/EM/visualizations/coursenotes/modules/guide02.pdf )  

 

http://web.mit.edu/viz/EM/visualizations/coursenotes/modules/guide02.pdf
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 If there is a collection of charges, q1, q2 etc. the force experienced by a test 

charge Q may be taken as the linear superposition of the forces experienced due to 

the individual charges. (the sum here is a vector sum) 

 i.e. 
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 The quantity in brackets may be considered as the combined influence of all 

the charges, in the configuration, on Q placed at a particular point in space. This 

influence of the charge configuration may be different at different points in the 

space around the charge configuration. This influence set up in the space around an 

electric charge is called an electric field. If the charge is stationary with respect to 

the frame of reference, the field is an electrostatic field. Electric field is represented 

by .E  

 Thus in the above example, 
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

 the position vector of the point where E is defined. 
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 Electric field is a vector quantity that varies from point to point and is 

determined by the configuration of source charges. 

 Physically )r(E is the force experienced by a unit positive charge placed at 

that point. 

Electric field due to continuous charge distributions 

 Three types of continuous charge distributions may be considered. 

1. Line charge distribution having charge per unit length ''  

2. Surface charge distribution having surface charge density ''  

3. Volume charge distribution having volume charge density ''  

 For a continuous charge distribution, the general form for the electric field 

must be, 

 
 dqr̂

r
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)r(E
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 where dq is an elemental charge in the continuous distribution located at 

.rrrandr 11 
 Depending upon the nature of the charge distribution dq may 

expressed in terms of the charge density at .r 1
 

 For a line charge distribution 
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For a surface charge distribution ( charge per unit area) 

 'da)r(dq


  where da’ is the elemental area 
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 For a volume charge distribution (charge per unit volume) 
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The calculation of electric field directly from the charge (source) distribution is 

based on Coulomb’s law. Therefore the expressions above are sometimes called 
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Coulomb’s law. The direct calculation may prove to be difficult often because of 

the complex nature of the integrals involved. Wherever symmetry of the 

distribution of electric charge permits, there are other easy methods for the 

calculation of electric field vector. 

Gauss’s law and the divergence of E  

  

 Consider the case of a point charge. The electric field around this point charge 

has a spherical symmetry in the sense that, in spherical polar coordinates, the 

strength of the electric fields depends only on the radial distance r and is 

independent of  and  . Therefore the magnitude of the electric field decreases as  

2r

1
from the point charge around it because, 

r̂
r

q
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 In order to represent the electric field, the concept of field lines may be used.  

One can think of a few lines of force originating from the point charge and 

uniformly distributed around it (with spherical symmetry) with directions radially 

outward for a positive charge. The total number of lines should be proportional to 

the magnitude of the point charge. The magnitude of the electric field is given by 

the number of lines passing through unit area held perpendicular to the lines of 

force. This density of lines decreases as ;
r

1
2

but the area increases with r2 and the 
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number lines (total) remains the same. This is in conformity with the inverse 

square dependence of |E| with r. It should be understood that there is no stipulation 

regarding the total number of field lines representing a particular charge, but once 

a number is chosen in the scheme, then the proportionality must be maintained 

everywhere. For example, let N be the number of lines for a point charge q then 

there must be 2N number for a charge 2q. The idea of electric field lines helps us 

in representing the electric fields due to different types of charge distributions. 

Field lines come out of positive charge and end in negative charge. If there only a 

positive charge present the field lines come out of the point charge and reach up to 

infinity. If there is another charge, a minus charge, present in the vicinity, some of 

the field lines, depending upon the magnitude of the minus charge, are directed 

towards it, in all cases keeping the condition that the total number of lines starting 

from (a + charge) or ending in (a – charge) will be proportional to the magnitude of 

the charge. The field lines can never cross because, if it is possible, at the point of 

crossing the electric field will have more than one direction! 
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(For simulation watch https://www.youtube.com/watch?v=nhGqF03plsM ) 

The totality of the field lines may be called the flux of the electric field (which 

naturally must be a scalar quantity, without any specification of direction). The 

electric flux that passes through any area of unit magnitude held perpendicular to 

the flux at that point is called the flux density (flux per unit perpendicular area). 

The flux density is the electric field E in magnitude and direction at the point about 

which the perpendicular, unit area is considered. In this model the flux of E

through any surface S is 


S

ad.E


 

https://www.youtube.com/watch?v=nhGqF03plsM
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 where E is the field at any point on the surface and ad


is the elemental area 

around it. The flux is a measure of the “number of lines” passing through the area 

S. 

Visualize flux in a closed box https://www.youtube.com/watch?v=5ENl4vn82bc  

 Gauss’s law states that the flux through any closed surface is 
0

q


where q is the 

charge enclosed by the closed surface. If there is no charge within the volume 

enclosed by the closed surface, the flux through the closed surface is zero. If there 

is net positive charge enclosed, the flux is positive, which means there is net 

outward ‘flow’ of flux through the closed surface. Of there is net negative charge 

enclosed, the flux is negative, ie there is net inward ‘flow’ of flux through the 

closed surface. 

 This can be proved, considering the example of a point charge. For a point 

charge q, the electric field at any point is given by 

 r̂
r

q
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1
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  

 Where r is the radial distance and r̂ is the unit vector pointing radially 

outwards. 

  

https://www.youtube.com/watch?v=5ENl4vn82bc
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Considering an elemental area, with r̂ perpendicular to it, 

 r̂ddsinrad 2 


 

   


 r̂ddsinr.r̂
r

q

4

1
ad.E 2

2

0


 

  
 








o

2

0 00

22
4

q
ddsin

4

q
 

 i.e. 
0

q


  



E-Learning study material for B.Sc/M.Sc Physics students by Dr. Ananda kumar V M, 

Associate Professor, Mahatma Gandhi college, Thiruvananthapuram, Kerala 2018 

 

Postgraduate Department of Physics & Research Centre, Mahatma Gandhi College, 

Kesavadasapuram, Pattom P O, Thiruvananthapuram, Kerala, India Page 14 

 

 which is the flux through the surface of a sphere with the centre coinciding 

with the point charge. 

In this case, the term r2 cancels out while taking the product of area with electric 

field, because area increases as r2 and E decreases as ,
r

1
2

always making the 

product a constant ).(
0

q
 Therefore Gauss’s law is a consequence of the inverse 

square law nature of .E  Instead of a single charge, if there are a number of point 

charges (discrete), according to the principle of superposition, the total electric 

field is the vector sum of all the individual fields. 


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
n

1i

iEE  

The flux through a closed surface that encloses all the charges is, 

  
  
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 Of there is a continuous distribution of electric charge within the volume 

enclosed by the closed ‘Gaussian Surface’, then, the Gauss’s law may be stated as, 

  



S V0

d
1

ad.E


 

 Where d is an elemental volume and  is the charge density in it. 

 Applying Gauss’s theorem in vector analysis, 

  
S V

d)E.(ad.E

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  



V V0

d
1

d)E.(  

 Since the equation is true for any arbitrary volume, 

0

E.



  

 This is the differential form of Gauss’s law in electrostatics. 

Applications of Gauss’s law 

 

 Gauss’s law may conveniently used for the calculation of electric field, 

wherever symmetry allows. Symmetry is crucial for the easy calculation because in 

cases of appropriate symmetry E can be taken out of the integral (E being uniform 

in magnitude over the area of integration). In problems where such symmetry 

exists, Gauss’s law is convenient over Coulomb’s law in direct application. There 

are three kinds of symmetry that commonly appear in physical situations. 

1. Spherical Symmetry – the Gaussian surface is a concentric sphere. 

2. Cylindrical symmetry –the Gaussian surface is a coaxial cylinder. 

3. Plane Symmetry – the Gaussian surface is a ‘pill box’ which protrudes on 

either side of the plane symmetrically. 
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The Curl of electrostatic field E  

  

Consider a point charge q. The radial electric field due to this charge is, 

r̂
r

q

4

1
E

2

0


  

 The line integral of this field from some point a to some other point b is, 


b

a

dl.E  

 In spherical polar coordinates, the length element, 
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 The line integral of E depends only on the initial and final points (ie ra and rb, 

their respective distances from the point charge situated at the origin of 

coordinates) Thus the line integral is independent of path. Hence the line integral 

of E over a closed path is zero. 

i.e.   0dl.E  

  
S

0ad).E(dl.E


 

 Applying Stoke’s theorem in vector analysis. 

 Since the surface is arbitrary, 

 0E   i.e. the curl of electrostatic field E is zero. This result is applicable 

to any static charge distribution. 

Electric Potential 

 

 The electrostatic field E  is a very special kind of vector function, one whose 

curl is always zero. This special property of electrostatic field E may be exploited 

to reduce a vector problem to a much simpler scalar problem. Because ,0E 

the line integral of E around any closed loop is zero (that follows from Stoke’s 

theorem). Because   0dl.E the line integral of E from point a to b is the same for 

all paths. Because the line integral is independent of path, we can define a function, 
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
r

O

dl.E)r(V


 

where O is some standard reference point. V then depends only on the point r


. V 

is called the electric potential. In most cases the  is chosen as the reference point. 

The negative sign is included in the definition in order to make the potential at a 

point due to the presence of a positive charge as positive. 

 The potential difference between two points a and b is given by 
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 Since V is a function of space coordinates, the differential, 
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 Comparing equation (1) and (2) VE   
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 Which means, the electrostatic field E is the negative gradient of a scalar 

potential function V. According to vector analysis, the curl of a gradient is zero, 

which is true for an electrostatic field 0)V()0Eie(   

 Equipotential : A Surface over which the potential is constant is called an 

equipotential. The electric field cannot have, therefore, a component parallel or 

tangential to an equipotential surface. The electric field is always perpendicular to 

an equipotential surface. 

 

 

 

Advantage of potential formulation : 

 

 If the potential V at any point is known, the filed E may be easily calculated 

as E.VE  is a vector quantity having three components in a three dimensional 

space. But V is a scalar quantity having only one component. It is surprising to 

note that the three components of E are calculated from the single component of V! 

This is possible only because the curl of an electrostatic field is zero, which 

establishes a relation among the three components Ex, Ey and Ez. 
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 The potential formulation reduces a vector problem down to a scalar one. 

Potential and potential difference  
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 In the definition of potential, the choice of reference point is arbitrary. But, 

whatever be the choice of reference point, the potential difference remains the 

same, between any two points. Thus the potential may have different values at the 

same point depending upon the reference point. For the same reference point the 

potential difference remains the same and is independent of the choice of reference 

point. Potential as such carries no physical significance. 

 A point at infinity is conveniently chosen as the reference point. But in the 

cases of charge distribution extending upto infinity, some other reference point 

must be chosen. 

Potential obeys superposition principle : 

 If V1, V2 it are the potentials at a point due to different charges (source) the 

total potential V = V1 + V2 + …… (an algebraic addition since V is scalar) 

Poisson’s equation 

  

The differential form of Gauss’s law is 

0

E.



 where   is the volume charge density. 

 At the same time, the electric field due to a static charge may be expressed as, 

VE  where V is the scalar, electric potential. 

 Substituting E is the Gauss’s law equation. 
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VV).()V.( 2  

i.e. 
0

2V



  or  
0

2V



  

 This equation is called the Poisson’s equation. The Poisson’s equation 

connects the electric potential to the source charge density of potential is known, 

the charge density may be calculated with ease, since there is only differentiation 

involved. But calculation of V knowing  is a more difficult task, if Poisson’s 

equation is employed. The difficulty in the calculation is due to the probable 

complexity in the integration involved. 

 

 

Laplace’s equation 

  

The poisson equation is 
0

2V



 . In regions where there is no charge ,0 and 

the Poisson’s equation reduces to Laplace’s equation. 

 The Laplace’s equation is 0V2   

 

Potential of a localized charge distribution 

  

The field E due to a point charge is given by .ˆ
4

1

20

r
r

q
E





 

Then the potential at 

any point in space, distant r


from the origin, with reference to infinity is 
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dr
r

q
dlEV

r r

 
 





 04

.  

i.e. 
r

q

4

1
V

0


  

 Here the sign of V is positive, suggesting that the potential due to a positive 

charge is always positive. This has been achieved by introducing the negative sign 

in the definition of potential of there are a number of discrete charge q1, q2 etc, 

using the superposition principle, the potential V is, 





n

i i

i

r

q
V

104

1


 

 Where ri is the distance of qi from the point where the potential V is 

calculated. 

 Now, for a continuous charge distribution 


 dq

r

1

4

1
V

0

 where r is the distance of dq from the point 

 For a volume charge distribution 

 



 1

1

0

d
r

)r(

4

1
)r(V




 

 For a line charge 





 1

1

0

dl
r

)r(

4

1
)r(V



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 and for a surface charge 



 'da

r

)r(

4

1
)r(V

1

0




 

 In the typical electrostatic problem you are given a source charge distribution

 , and you want to find the electric field E it produces. Unless the symmetry of the 

problem admits a solution by Gauss’s law, it is generally advantageous to calculate 

the potential first as an intermediate step. 

 The three fundamental quantities of electrostatics are .VandE, There are six 

formulae interrelating them, which are actually derived from just two experimental 

observations (1) the principle of superposition and (2) coulomb’s law. 

1. From 





2

11

0
r

dr̂)r(

4

1
E:VandEto


 

     





r

d)r(

4

1
V

11

0


 

2. From E.:VandtoE
0





    dl.EV  

3. From V to V:Eand 2

0





  VE   

Electrostatic Boundary Conditions 

  

Electric field always undergoes a discontinuity when it crosses a surface of charge 

density . Consider a thin sheet carrying a surface charge density .  Let us draw a 
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wafer thin Gaussian pill box, extending just barely over the edge in each direction 

(above and below)  

 
 

 

According to Gauss’s law 

 






S 00

ena A
1Q

ad.E


 

where A is the area of the pill box lid. (of  is not uniform over the surface, we 

must consider A to be very small).  
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Since the sides of the pill box have extremely small area, they do not contribute to 

the flux. Therefore, the equation is 

0

belowabove

A
AEAE




 
 

0

belowabove
EE.ie




   

 Where 
above

E denotes the component of E that is perpendicular to the surface 

immediately above and 
above

E is the component perpendicular to the surface just 

below. For consistency the upward direction is considered as positive in both the 

cases. Now, the conclusion is that, the normal component of the electrostatic field 

is discontinuous by an amount 
0




at any boundary. However, where there is no 

surface charge, E is continuous. 

 The tangential component of ,E by contrast, is always continuous. To prove 

this consider 

  0dl.E  

 Considering dl as the length element along the closed loop on the side of the 

pill box, 

  0lElEdl.E 11

2belo

11

above
 

 Since, the thickness of the pill box 0  
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11

below

11

above
EE  where E11 stands for the components parallel (ie tangential) to 

the surface. The boundary conditions on E can be combined into a single formula 

n̂EE
0

belowabove




  

 Where n̂ is a unit vector perpendicular to the surface pointing from “below” to 

“above”. 

 The potential is continuous across any boundary since 

 
b

a

belowabove
dl.EaVV  

 As 0 the path length shrinks to zero so that the integral tends to zero. 

 
belowabove VV   

 The gradient of the potential V is discontinuous as E is discontinuous. 

 Ie. n̂
1

VV
0

belowabove



  

 

 

 

 

Work and Energy in electrostatics 

 

1. The work done to move a charge : Consider a charge Q in an electric field E . 

The charge experiences a force EQ in the direction of the field. Of now the charge 
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is to be moved in a direction opposite to the field, without acquiring any 

acceleration, a force EQF 
 
is to be applied and if the charge moves through a 

distance (infinitesimal displacement) dlunder this force the work done on the 

charge is dl.EQdl.Fdw  . For a finite displacement from point a to point b, the 

work done is, 


b

a

dl.EQW   But )a(V)b(Vdl.E
b

a

   

Where V(b) and V(a) are the electrostatic potentials at b and a respectively. 

This work gets stored as potential energy of the charged body in the electrostatic 

field. QV(b) may be called the potential energy of the charge at the point ‘b’ and Q 

V(a) the potential energy at ‘a’. Under this concept, the electrostatic potential V(b) 

or V(a) may be interpreted as ‘potential energy’ per unit charge. And, potential 

difference is understood as the workdone in moving unit charge from one point to 

the other. 

Q

W
)a(V)b(V   

Now, if the zero potential is considered at infinity, the workdone in bringing the 

charge from infinity to a point r


 is given by 

)](V)r(V[QW 

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 )r(QVWie


  Since 0)(V 
 

according to the choice of reference 

point at infinity. 

2. The energy of a point charge distribution 

  

Consider a certain configuration of point charges. We can imagine that all these 

charges have been brought from infinity (say, the zero, potential) to their 

respective positions. Thus work is done to assemble all the point charges into the 

configuration. 

 To start with, let charge q1 be brought from infinity to the position .r1


Since 

there is no electric field (in the absence of any charge) already existing, no work is 

done in this process. Therefore, the work W1 = 0. Now, we bring charge q2 and 

place it at position .r2


Since q1 is already there, there is a potential at .r2


given by, 

)r(V 2


due to q1 at 

12

1

0

1
r

q

4

1
r





  

Where 
1212 rrr


 . Therefore work done, 

12

21

012

1

0

22
r

qq

4

1

r

q

4

1
qW





  

In bringing the charge q3 from infinity and placing it at 
3r


 is 














23

32

13

31

0

3
r

qq

r

qq

4

1
W  

Similarly for a charge q4 at 
4r

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












34

43

24

42

14

41

0

4
r

qq

r

qq

r

qq

4

1
W  

Thus the total work done in assembling all the four charges is, 

4321 WWWWW   

















23

32

13

31

012

21

0
r

qq

r

qq

4

1

r

qq

4

1
0 













34

43

24

42

14

41

0
r

qq

r

qq

r

qq

4

1
 

Ie 












34

43

24

42

23

32

14

41

13

31

12

21

0
r

qq

r

qq

r

qq

r

qq

r

qq

r

qq

4

1
W  

If there are n charges in the configuration, the work done in assembling them is, 






n

1j ij

ji

0
ij

r

qq

4

1
W The stipulation j > i is to ensure that doubling of the terms does 

not occur. 

 Another way to do this is to count each pair twice and take half of the sum. 

ie  
 





n

1i

n

1j ij

ji

0
ij

r

qq

4

1

2

1
W  

In this representation since all the combinations come, the order in which the 

assembly is made is insignificant  

 Now, making some rearrangements, 

  
  



















n

1i

n

1j ij

j

0

i

1j

r

q

4

1
q

2

1
W  
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The term in parantheses is the potential at 
ir


 (the position of qi) due to all other 

charges. If this potential is called 



n

1i

iii
)r(Vq

2

1
W),r(V


 

This is the energy possessed by the configuration of charges. 

3. The energy of a continuous charge distribution 

 If  is the volume charge density for a three dimensional space, the energy 

possessed by it as the work done in assembling the continuous charge distribution, 

is given by 

   Vd
2

1
W  

Where in general, and V may be functions of position coordinates. 

From Gauss’s law 

E.0   

 


 Vd)E.(
2

W 0
 

We have 

V.EE.V)EV.(   

    d)V.(Ed)E.(Vd)EV.(  

but according to Gauss’s divergence theorem, 

 
S

v adEVdEV


.).(   
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   
S

d)V.(Ed)E.(Vad.EV


 

  
S

ad.EVd)V.(EVd)E.(


 





 


  

S

0 ad.EVd)V.(E
2

W


 

But EV   





 


  

S

20 ad.EVdE
2

W


 

Of the volume over which the integral is done is increased the value of the first 

integral increases (since E2 is positive) But in order to make the sum finite the 

second integral decreases (since V decreases as 
r

1
and E decreases as 

2r

1
as the 

surface gets enlarged, but the surface increases as r2 making the net decrease of the 

integral as 
r

1
) 

 Thus, making the integral over all space, the second integral becomes zero. 

 



spaceall

20 dE
2

W  

 The energy stored per unit volume (energy density) of the field 2

0
E

2

1
  

 The electrostatic energy is quadratic in the field. .E Therefore the energy does 

not obey a superposition principle. 



E-Learning study material for B.Sc/M.Sc Physics students by Dr. Ananda kumar V M, 

Associate Professor, Mahatma Gandhi college, Thiruvananthapuram, Kerala 2018 

 

Postgraduate Department of Physics & Research Centre, Mahatma Gandhi College, 

Kesavadasapuram, Pattom P O, Thiruvananthapuram, Kerala, India Page 32 

 

 The energy of a compound system is not the sum of the energies of its parts 

considered separately. (there are also cross terms) 

 Consider the superposition of two fields .EandE 21  

 The total field is .EEE 21   

 The total energy is  





 d)E.E(
2

dE
2

W 020
 

 


 d)EE).(EE(
2

W.ie 2121
0

 

   





 dEEdE
2

dE
2

W.ie 210

2

2
02

1
0

 

  d)E.E(WW 21021
 

If the charge everywhere is doubled the energy is quadrupled. 

Conductors 

 In an insulator, such as glass or rubber, each electron is attached to a particular 

atom. In a metallic conductor, by contrast, one or more electrons per atom are free 

to move about through the material. Thus a conductor has a large number of ‘free 

electrons’ or ‘conduction electrons’ 

1. The electric field 0E  inside a conductor 
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 When a conductor is exposed to an external electric field ,E0 the field will 

drive positive charges in the direction of the field and negative charges in the 

opposite direction. Since there are only free electrons in the conductor, the electric 

field 0E will drive the electrons in a direction opposite to the electric field making 

the side on the direction of the electric field positive as shown in fig. The side 

where the electrons are driven to becomes negative. These are called induced 

charges. Thus it is seen that the induced charges produce an electric field ,E1

opposite to ,E0 inside the conductor. The charge flow inside the conductor will 

continue until the induced field 1E becomes equal in magnitude to .E0 Since the two 

fields are equal and opposite, they cancel out each other making the electric field 

inside a conductor zero. 

2. 0  inside a conductor 

 This follows from Gauss’s law : 



 ,0EorE.
0

is also zero charges are 

there inside a conductor, but exactly as much plus charge as minus, so the net 

charge density (macroscopically averaged) in the interior of a conductor is zero. 

3. Any net charge resides on the surface 

4. A conductor is an equipotential 

 If a and b are any two points within or on the surface of a conductor then, 
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  
b

a

0dl.E)a(V)b(V  since 0E   

 )a(V)b(V  Thus the potential is the same every where inside and on the 

surface of a conductor. 

5. E is perpendicular to the surface, just outside a conductor 

 If there happens to be a tangential component of ,E this will drive charges in 

such a way that an induced field will develop, cancelling the tangential component 

of .E There will be only a perpendicular E just outside. 

Electric field inside a dielectric 

 Most everyday objects belong to one of the two large classes: conductors and 

insulators (or dielectrics).  In dielectrics, all charges are attached to specific 

atoms or molecules. What such charges can maximum do is to move a bit within 

the atom or molecule. 

 When an atom is placed in an electric field, the nucleus is pushed in the 

direction of the field, and the electrons the opposite way. The two opposing forces 

- E pulling the nucleus and electrons apart, their mutual attraction drawing then 

together – reach a balance, leaving the atom polarized. The atom now has a tiny 

dipole moment ,P which points in the same direction as .E Typically, this induced 
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dipole moment is approximately proportional to the field as long as the field is not 

too strong. 

i.e. EP   

The constant of proportionality   is called atomic polarizability. 

 For molecules the situation is not quite so simple. The polarizability may be 

different in different directions in a molecule, making   a tensor rather than a 

scalar as in the above case. 

 If the electric field applied is too large, it may ionize the atoms in a dielectric 

breakdown. 

Polarization 

  

If a substance consisting of neutral atoms is placed in an electric field, polarization 

takes place. If the material is made up of polar molecules (having permanent dipole 

moment) each permanent dipole will experience a torque, tending to line it up 

along the field direction. These two mechanisms produce the same result a lot of 

little dipoles pointing along the direction of the field make the material polarized. 

A convenient measure of this effect is called polarization. 

 Polarization P is the dipolement per unit volume  

The electric displacement 

Gauss’s law in the presence of dielectrics 
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 Within a dielectric, the charge density has two parts one is the bound charge 

(in the dipole) density 
b and the other the free charge (if present) density .f The 

total charge density is 

fb   

It can be shown that  .
b

 

From Gauss’s law E.0   

f0 P.E.   

f0 P.E..e.i   

f0 )PE.(.e.i   

 The expression PE
0

 is defined as the electric displacement .D Therefore 

the Gauss’s law reads, 

 
fD.   

 or in integral form  
S

feneQad.D


where Qfene is the total free charge enclosed in 

the volume. This is a particularly useful way to express Gauss’s law because it 

makes reference only to free charges. Free charges are the source of electric field, 

bound charges come as an after effect. 

 

 


	Faraday had speculated that light, too, is electrical in nature. Maxwell’s theory provided spectacular justification for this hypothesis. Hertz presented the decisive experimental confirmation for Maxwell’s theory in 1888. By 1900, then, three great b...

